Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 13 de 13
1.
J Tradit Complement Med ; 12(2): 115-122, 2022 Mar.
Article En | MEDLINE | ID: mdl-35528470

Background and aim: This study investigated the effect of Kava extract (Piper methysticum), a medicinal plant that has been worldly used by its anxiolytic effects, on monoamine oxidase (MAO) activity of mice brain after 21 days of treatment as well as anxiolytic and locomotor behavior. Furthermore, the in vitro inhibitory profile of Kava extract on MAO-B activity of mouse brain was evaluated. Experimental procedure: Mice were treated with Kava extract (10, 40, 100 and 400 mg/kg) for 21 days by gavage. After behavioral analysis (plus maze test and open field), MAO activity in different mouse brain structures (cortex, hippocampus, region containing the substantia nigra and striatum) were performed. MAO-B inhibitory profile was characterized in vitro. Results: The treatment with Kava extract (40 mg/kg) increased the percentage of entries of mice into the open arms. Ex vivo analysis showed an inhibition on MAO-B activity caused by Kava extract in cortex (10 mg/kg) and in the region containing the substantia nigra (10 and 100 mg/kg). In vitro, Kava extract also reversibly inhibited MAO-B activity with IC50 = 14.62 µg/mL and, increased Km values at the concentrations of 10 and 30 µg/mL and decreased Vmax value at 100 µg/mL. Conclusion: Kava extract showed different effects on MAO-B isoform depending on the brain structure evaluated. Therefore, the use of Kava extract could be promissory in pathologies where MAO-B is the pharmacological target.

2.
Naunyn Schmiedebergs Arch Pharmacol ; 393(12): 2439-2452, 2020 12.
Article En | MEDLINE | ID: mdl-32725283

This study evaluated the effect of (+)-catechin, a polyphenolic compound, on orofacial dyskinesia (OD) induced by reserpine in mice. The potential modulation of monoaminoxidase (MAO) activity, tyrosine hydroxylase (TH) and glutamic acid decarboxylase (GAD67) immunoreactivity by catechin were used as biochemical endpoints. The interaction of catechin with MAO-A and MAO-B was determined in vitro and in silico. The effects of catechin on OD induced by reserpine (1 mg/kg for 4 days, subcutaneously) in male Swiss mice were examined. After, catechin (10, 50 or 100 mg/kg, intraperitoneally) or its vehicle were given for another 20 days. On the 6th, 8th, 15th and 26th day, vacuous chewing movements (VCMs) and locomotor activity were quantified. Biochemical markers (MAO activity, TH and GAD67 immunoreactivity) were evaluated in brain structures. In vitro, catechin inhibited both MAO isoforms at concentrations of 0.34 and 1.03 mM being completely reversible for MAO-A and partially reversible for MAO-B. Molecular docking indicated that the catechin bound in the active site of MAO-A, while in the MAO-B it interacted with the surface of the enzyme in an allosteric site. In vivo, reserpine increased the VCMs and decreased the locomotor activity. Catechin (10 mg/kg), decreased the number of VCMs in the 8th day in mice pre-treated with reserpine without altering other behavioral response. Ex vivo, the MAO activity and TH and GAD67 immunoreactivity were not altered by the treatments. Catechin demonstrated a modest and transitory protective effect in a model of OD in mice.


Catechin/therapeutic use , Dyskinesias/drug therapy , Dyskinesias/metabolism , Mastication/drug effects , Motor Activity/drug effects , Reserpine/toxicity , Animals , Antipsychotic Agents/toxicity , Catechin/pharmacology , Dose-Response Relationship, Drug , Male , Mastication/physiology , Mice , Molecular Docking Simulation/methods , Monoamine Oxidase Inhibitors/pharmacology , Monoamine Oxidase Inhibitors/therapeutic use , Motor Activity/physiology , Protein Structure, Secondary , Treatment Outcome
3.
Mol Biol Rep ; 46(2): 2285-2292, 2019 Apr.
Article En | MEDLINE | ID: mdl-30756334

Oxidative stress occurs due to an imbalance between antioxidant defenses and pro-oxidant agents in brain. This condition has been associated to the pathogenesis of several brain diseases; therefore, increasing the use of compounds that exert antioxidant activity. Thus, the objective of this study was to evaluate, in vitro, the effect of isoflavones in: (1) lipid peroxidation, catalase activity and thiol groups in the presence of pro-oxidants: sodium nitroprusside or Fe2+/EDTA complex in rat brain homogenates; (2) the activity of the enzyme monoamine oxidase (MAO). As a result, the isoflavones reduced lipid peroxidation in a manner dependent on the concentration and protected against the reduction of catalase activity as well as the induced thiol oxidation in brain tissue. In addition, isoflavones inhibited MAO activity (MAO-A and MAO-B). Taken together, our results showed that isoflavones avoided oxidative stress and decreased the MAO activity, suggesting a promissory use in the treatment of neurodegenerative diseases.


Isoflavones/metabolism , Isoflavones/therapeutic use , Monoamine Oxidase Inhibitors/metabolism , Animals , Brain/metabolism , Catalase/drug effects , Lipid Peroxidation/drug effects , Male , Monoamine Oxidase/metabolism , Monoamine Oxidase Inhibitors/pharmacology , Nitroprusside/pharmacology , Oxidation-Reduction , Oxidative Stress/drug effects , Rats , Rats, Wistar , Reactive Oxygen Species/pharmacology
5.
Pharmacol Biochem Behav ; 166: 21-26, 2018 03.
Article En | MEDLINE | ID: mdl-29374574

Tardive dyskinesia (TD) is a common adverse effect observed in patients with long-term use of typical antipsychotic medications. A vacuous chewing movement (VCM) model induced by haloperidol has been used to study these abnormalities in experimental animals. The cause of TD and its treatment remain unknown, but several lines of evidence suggest that dopamine receptor supersensitivity and gamma-aminobutyric acid (GABA) insufficiency play important roles in the development of TD. This study investigated the effects of treatment with the GABA-mimetic drug gabapentin on the development of haloperidol-induced VCMs. Male mice received vehicle, haloperidol (1.5 mg/kg), or gabapentin (GBP, 100 mg/kg) intraperitoneally during 28 consecutive days. Quantification of VCMs was performed before treatment (baseline) and on day 28, and an open-field test was also conducted on the 28th day of treatment. The administration of gabapentin prevented the manifestation of haloperidol-induced VCMs. Treatment with haloperidol alone reduced the locomotor activity in the open-field test that was prevented by co-treatment with gabapentin. We did not find any differences among the groups nor in the tyrosine hydroxylase (TH) or glutamic acid decarboxylase (GAD) immunoreactivity or monoamine levels in the striatum of mice. These results suggest that treatment with gabapentin, an analog of GABA, can attenuate the VCMs induced by acute haloperidol treatment in mice without alterations in monoamine levels, TH, or GAD67 immunoreactivity in the striatum.


Dopamine Antagonists/toxicity , GABA Modulators/pharmacology , Gabapentin/pharmacology , Haloperidol/toxicity , Mastication/drug effects , Animals , Anti-Anxiety Agents/pharmacology , Anti-Dyskinesia Agents/toxicity , Male , Mastication/physiology , Mice
6.
Mol Neurobiol ; 55(3): 1928-1941, 2018 03.
Article En | MEDLINE | ID: mdl-28244005

Considering the antioxidant properties of sodium selenite (Na2SeO3) and the involvement of oxidative stress events in paraquat-induced neurotoxicity, this study investigated the protective effect of dietary Na2SeO3 on biochemical and behavioral parameters of zebrafish exposed to paraquat (PQ). Fish were pretreated with a Na2SeO3 diet for 21 days and then PQ (20 mg/kg) was administered intraperitoneally with six injections for 16 days. In the novel tank test, the Na2SeO3 diet prevented the locomotor impairments, as well as the increase in the time spent in the top area of the tank, and the exacerbation of freezing episodes. In the preference for conspecifics and in the mirror-induced aggression (MIA) tasks, Na2SeO3 prevented the increase in the latency to enter the area closer to conspecifics and the agonistic behavior of PQ-treated animals, respectively. Na2SeO3 prevented the increase of carbonylated protein (CP), reactive oxygen species (ROS), and nitrite/nitrate (NOx) levels, as well as the decrease in non-protein thiols (NPSH) levels. Regarding the antioxidant enzymatic defenses, Na2SeO3 prevented the increase in catalase (CAT) and glutathione peroxidase (GPx) activities caused by PQ. Altogether, dietary Na2SeO3 improves behavioral and biochemical function impaired by PQ treatment in zebrafish, by modulating not only redox parameters, but also anxiety- and aggressive-like phenotypes in zebrafish.


Herbicides/toxicity , Neuroprotective Agents/administration & dosage , Oxidative Stress/drug effects , Paraquat/toxicity , Sodium Selenite/administration & dosage , Animals , Locomotion/drug effects , Locomotion/physiology , Oxidative Stress/physiology , Thiobarbituric Acid Reactive Substances/metabolism , Zebrafish
7.
Neurochem Res ; 42(11): 3033-3040, 2017 Nov.
Article En | MEDLINE | ID: mdl-28744755

Typical antipsychotics, which are commonly used to treat schizophrenia, cause motor disorders such as tardive dyskinesia (TD) in humans and orofacial dyskinesia (OD) in rodents. The disease mechanisms as well as treatment effectiveness are still unknown. In this study, we investigated the effect of resveratrol, a polyphenol with neuroprotective properties, on behavioral changes induced by chronic treatment with fluphenazine in rats and the possible relationship between monoamine oxidase (MAO) activity and vacuous chewing movements (VCMs). Rats were treated for 18 weeks with fluphenazine enantate [25 mg/kg, intramuscularly (i.m.), every 21 days] and/or resveratrol (20 mg/kg, offered daily in drinking water). Next, body weight gain, behavioral parameters (VCMs and open field tests-locomotor and rearing activity), and MAO activity were evaluated. Fluphenazine treatment reduced body weight gain, number of crossings and rearings, and the co-treatment with resveratrol did not affect these alterations. Fluphenazine increased the prevalence and intensity of VCMs and the co-treatment with resveratrol reduced the VCMs. Furthermore, a negative correlation was found between the number of VCMs and MAO-B activity in the striatum of rats. Our data suggest that resveratrol could be promissory to decrease OD. Moreover, MAO-B activity in the striatum seems to be related to VCMs intensity.


Antioxidants/therapeutic use , Antipsychotic Agents/toxicity , Dyskinesias/prevention & control , Fluphenazine/toxicity , Motor Activity/drug effects , Stilbenes/therapeutic use , Animals , Antioxidants/pharmacology , Antipsychotic Agents/administration & dosage , Drug Administration Schedule , Dyskinesias/psychology , Fluphenazine/administration & dosage , Male , Mastication/drug effects , Mastication/physiology , Motor Activity/physiology , Rats , Rats, Wistar , Resveratrol , Stilbenes/pharmacology
9.
Neurochem Res ; 41(9): 2481-9, 2016 Sep.
Article En | MEDLINE | ID: mdl-27230882

Antipsychotic drugs have been used in the treatment of schizophrenia and their long-term use can cause movement disorders, such as tardive dyskinesia (TD) in humans mainly typical ones such as haloperidol. Neuroinflammation has been implicated to the use of antipsychotics besides its participation in TD remains unclear. Thus, the aim of this study was to investigate the relation of cytokines with vacuous chewing movements (VCMs) in rats comparing typical and atypical antipsychotics. Rats were treated with haloperidol or risperidone for 28 days. On day 29, rats were subjected to behavioral analysis (quantification of crossing and rearing numbers and VCMs) with subsequent measurement of cytokines levels in the striatum. Haloperidol, but not risperidone treatment significantly decreased the number of crossing and rearing and increased the VCMs when compared with control group. Both antipsychotics were able to increase the levels of pro-inflammatory cytokines (IL-1ß, IL-6, TNF-α and IFN-γ) and decrease the anti-inflammatory cytokine (IL-10) in striatum of rats. However, IL-1ß and IFN-γ levels were higher in animals treated with haloperidol than risperidone. Furthermore, positive correlations were observed between the cytokines (IL-1ß and IFN-γ) and VCM numbers. Thus, the results suggest a role of inflammatory markers in the development of movement disorders, especially IL-1ß and IFN-γ.


Antipsychotic Agents/pharmacology , Behavior, Animal/drug effects , Corpus Striatum/drug effects , Cytokines/metabolism , Haloperidol/pharmacology , Animals , Corpus Striatum/metabolism , Male , Movement Disorders/drug therapy , Rats, Wistar , Risperidone/pharmacology
10.
Neurochem Res ; 41(5): 1170-84, 2016 May.
Article En | MEDLINE | ID: mdl-26732278

Long-term treatment with fluphenazine is associated with manifestation of extrapyramidal side effects, such as tardive dyskinesia. The molecular mechanisms related to the pathophysiology of TD remain unclear, and several hypotheses, including a role for oxidative stress, have been proposed. Harpagophytum procumbens is an herbal medicine used mainly due to anti-inflammatory effects, but it also exhibits antioxidant effects. We investigated the effect of ethyl acetate fraction of H. procumbens (EAF HP) in fluphenazine-induced orofacial dyskinesia by evaluating behavioral parameters at different times (vacuous chewing movements (VCM's) and locomotor and exploratory activity), biochemical serological analyses, and biochemical markers of oxidative stress of the liver, kidney, cortex, and striatum. Chronic administration of fluphenazine (25 mg/kg, intramuscular (i.m) significantly increased the VCMs at all analyzed times (2, 7, 14, and 21 days), and this was inhibited by EAF HP (especially at a dose of 30 mg/kg). Fluphenazine decreased locomotion and exploratory activity, and EAF HP did not improve this decrease. Fluphenazine induced oxidative damage, as identified by changes in catalase activity and ROS levels in the cortex and striatum, which was reduced by EAF HP, especially in the striatum. In the cortex, EAF HP was protective against fluphenazine-induced changes in catalase activity but not against the increase in ROS level. Furthermore, EAF HP was shown to be safe, since affected serum biochemical parameters or parameters of oxidative stress in the liver and kidney. These findings suggest that the H. procumbens is a promising therapeutic agent for the treatment of involuntary oral movements.


Acetates/chemistry , Antioxidants/pharmacology , Antipsychotic Agents/toxicity , Brain/drug effects , Fluphenazine/toxicity , Harpagophytum/chemistry , Mastication/drug effects , Oxidative Stress/drug effects , Plant Extracts/pharmacology , Tardive Dyskinesia/drug therapy , Animals , Antioxidants/therapeutic use , Brain/metabolism , Exploratory Behavior/drug effects , Free Radical Scavengers/pharmacology , Free Radical Scavengers/therapeutic use , Male , Motor Activity/drug effects , Plant Extracts/therapeutic use , Rats, Wistar , Solvents , Tardive Dyskinesia/chemically induced , Tardive Dyskinesia/metabolism , Tardive Dyskinesia/psychology
11.
Psychopharmacology (Berl) ; 233(3): 457-67, 2016 Feb.
Article En | MEDLINE | ID: mdl-26514557

RATIONALE: Reserpine, a monoamine-depleting agent, which irreversibly and non-selectively blocks the vesicular monoamine transporter, has been used as an animal model to study several neurological disorders, including tardive dyskinesia and Parkinson's disease. OBJECTIVE: The purpose of this study was to examine if motor deficits induced by reserpine in mice could be related to alterations in the expression of dopaminergic system proteins such as tyrosine hydroxylase (TH) and dopamine transporter (DAT) and in the activity of monoamine oxidase (MAO). METHODS: Mice received either vehicle or reserpine (0.1, 0.5, or 1 mg/kg, s.c.) for four consecutive days. Two, 20, or 60 days after reserpine withdrawal, behavioral, and neurochemical changes were evaluated. RESULTS: Reserpine at a dose of 0.5 and 1 mg/kg increased vacuous chewing movements (VCMs) and reduced locomotion. Behavioral changes were accompanied by reduction in TH immunoreactivity in the striatum evaluated on days 2 and 20 after the last injection of 1 mg/kg reserpine. Furthermore, negative correlations were found between VCM and MAO-A or MAO-B on day 2 and TH striatal immunoreactivity on day 20 after the last injection of 1 mg/kg reserpine. A positive correlation was observed between VCMs and DAT immunoreactivity in the substantia nigra on day 2 after the last injection of 0.5 mg/kg reserpine. CONCLUSIONS: These findings suggest that the pharmacological blockage of vesicular monoamine transporter (VMAT) by reserpine caused neurochemical and behavioral alterations in mice.


Adrenergic Uptake Inhibitors/pharmacology , Behavior, Animal/drug effects , Brain Chemistry/drug effects , Reserpine/pharmacology , Animals , Corpus Striatum/drug effects , Corpus Striatum/enzymology , Dopamine/physiology , Dopamine Plasma Membrane Transport Proteins/drug effects , Dopamine Plasma Membrane Transport Proteins/metabolism , Dose-Response Relationship, Drug , Male , Mastication/drug effects , Mice , Monoamine Oxidase/metabolism , Motor Activity/drug effects , Substantia Nigra/drug effects , Substantia Nigra/metabolism , Tyrosine 3-Monooxygenase/metabolism
12.
Article En | MEDLINE | ID: mdl-24747871

Antipsychotics may cause tardive dyskinesia in humans and orofacial dyskinesia in rodents. Although the dopaminergic system has been implicated in these movement disorders, which involve the basal ganglia, their underlying pathomechanisms remain unclear. CB1 cannabinoid receptors are highly expressed in the basal ganglia, and a potential role for endocannabinoids in the control of basal ganglia-related movement disorders has been proposed. Therefore, this study investigated whether CB1 receptors are involved in haloperidol-induced orofacial dyskinesia in rats. Adult male rats were treated for four weeks with haloperidol decanoate (38mg/kg, intramuscularly - i.m.). The effect of anandamide (6nmol, intracerebroventricularly - i.c.v.) and/or the CB1 receptor antagonist SR141716A (30µg, i.c.v.) on haloperidol-induced vacuous chewing movements (VCMs) was assessed 28days after the start of the haloperidol treatment. Anandamide reversed haloperidol-induced VCMs; SR141716A (30µg, i.c.v.) did not alter haloperidol-induced VCM per se but prevented the effect of anandamide on VCM in rats. These results suggest that CB1 receptors may prevent haloperidol-induced VCMs in rats, implicating CB1 receptor-mediated cannabinoid signaling in orofacial dyskinesia.


Antipsychotic Agents/adverse effects , Arachidonic Acids/pharmacology , Cannabinoid Receptor Agonists/pharmacology , Dyskinesia, Drug-Induced/drug therapy , Endocannabinoids/pharmacology , Haloperidol/analogs & derivatives , Polyunsaturated Alkamides/pharmacology , Receptor, Cannabinoid, CB1/metabolism , Animals , Cannabinoid Receptor Antagonists/pharmacology , Disease Models, Animal , Dose-Response Relationship, Drug , Dyskinesia, Drug-Induced/physiopathology , Haloperidol/adverse effects , Male , Mastication/drug effects , Mastication/physiology , Movement/drug effects , Movement/physiology , Piperidines/pharmacology , Pyrazoles/pharmacology , Rats, Wistar , Rimonabant , Treatment Outcome
13.
Pharmacol Biochem Behav ; 104: 132-7, 2013 Mar.
Article En | MEDLINE | ID: mdl-23313549

Involuntary oral movements are present in several diseases and pharmacological conditions; however, their etiology and efficient treatments remain unclear. Gallic acid is a natural polyphenolic acid found in gall nuts, sumac, oak bark, tea leaves, grapes and wine, with potent antioxidant and antiapoptotic activity. Thus, the present study investigated the effects of gallic acid on vacuous chewing movements (VCMs) in an animal model induced by reserpine. Rats received either vehicle or reserpine (1mg/kg/day, s.c.) during three days, followed by treatment with water or different doses of gallic acid (4.5, 13.5 or 40.5mg/kg/day, p.o.) for three more days. As result, reserpine increased the number of VCMs in rats, and this effect was maintained for at least three days after its withdrawal. Gallic acid at two different doses (13.5 and 40.5mg/kg/day) has reduced VCMs in rats previously treated with reserpine. Furthermore, we investigated oxidative stress parameters (DCFH-DA oxidation, TBARS and thiol levels) and Na(+),K(+)-ATPase activity in striatum and cerebral cortex, however, no changes were observed. These findings show that gallic acid may have promissory use in the treatment of involuntary oral movements.


Dyskinesia, Drug-Induced/drug therapy , Gallic Acid/pharmacology , Mastication/drug effects , Reserpine/toxicity , Adrenergic Uptake Inhibitors/toxicity , Animals , Antioxidants/administration & dosage , Antioxidants/pharmacology , Antipsychotic Agents/toxicity , Brain/drug effects , Brain/physiopathology , Disease Models, Animal , Dyskinesia, Drug-Induced/physiopathology , Gallic Acid/administration & dosage , Male , Mastication/physiology , Oxidative Stress/drug effects , Rats , Rats, Wistar , Sodium-Potassium-Exchanging ATPase/metabolism
...